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Abstract
Cerebral atrophy rate is increasingly used as an outcome measure for Alzheimer's disease (AD) trials.
We used the Alzheimer's disease Neuroimaging initiative (ADNI) dataset to assess if adjusting for
baseline characteristics can reduce sample sizes. Controls (n = 199), patients with mild cognitive
impairment (MCI) (n = 334) and AD (n = 144) had two MRI scans, 1-year apart; ~ 55% had baseline
CSF tau, p-tau, and Aβ1-42. Whole brain (KN–BSI) and hippocampal (HMAPS-HBSI) atrophy rate,
and ventricular expansion (VBSI) were calculated for each group; numbers required to power a
placebo-controlled trial were estimated. Sample sizes per arm (80% power, 25% absolute rate
reduction) for AD were (95% CI): brain atrophy = 81 (64,109), hippocampal atrophy = 88 (68,119),
ventricular expansion = 118 (92,157); and for MCI: brain atrophy = 149 (122,188), hippocampal
atrophy = 201 (160,262), ventricular expansion = 234 (191,295). To detect a 25% reduction relative
to normal aging required increased sample sizes ~ 3-fold (AD), and ~ 5-fold (MCI). Disease severity
and Aβ1-42 contributed significantly to atrophy rate variability. Adjusting for 11 predefined
covariates reduced sample sizes by up to 30%. Treatment trials in AD should consider the effects of
normal aging; adjusting for baseline characteristics can significantly reduce required sample sizes.
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Alzheimer's disease (AD) is the commonest form of degenerative dementia, and is increasing
in prevalence as the population ages (Ferri et al., 2005). Current treatments provide
symptomatic benefits but have not been shown to alter the underlying progression of the
disease. Rapid advances in our understanding of the underlying genetics and cellular biology
of AD have led to the development of specific therapies targeting the pathological processes
underlying AD. There is thus an urgent requirement to design trials that can distinguish
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symptomatic from disease-modifying effects. Ultimately, disease-modifying drugs should
produce a sustained reduction in clinical decline and increase time to institutionalization or
death; however trials aiming to show such effects are logistically difficult and lengthy. In
disease modification trials there is therefore an interest in incorporating imaging or other
biomarkers that can be measured repeatedly and ideally non-invasively, and can be used across
the spectrum of disease severity (Cummings, 2009).

Pathological global and regional cerebral atrophy reflects neuronal cell loss and can be
measured accurately from serially acquired MRI scans, (Fox and Schott, 2004; Jack et al.,
2005). Atrophy rates have been shown to correlate with cognitive decline in AD, (Jack et al.,
2009; Schott et al., 2008) and are increasingly used as an outcome measure in clinical trials of
AD (Fox et al., 2005; Jack et al., 2003) and mild cognitive impairment (MCI) (Jack et al.,
2008). Using change in cerebral volume as an outcome measure may also reduce the numbers
of patients needed to show that a therapy has an effect on the pathological process.

Sample sizes are critically dependent on the variability of the measured outcome. In the case
of rates of atrophy measured from serially acquired scans, reductions in within-subject
variability and thereby sample size may be achieved in a number of ways, including: (1)
improving acquisition stability; (2) using novel trials designs incorporating run-in periods,
cross-over designs, or multitime point acquisition; or (3) using more sensitive and precise
measures to detect change.

An alternative method to reduce sample sizes for trials is to decrease the between-subject
variance, i.e. the heterogeneity of the study population. This can be achieved by limiting entry
to the study, for example by only recruiting patients at similar disease stages; stratifying
patients, for example on the basis of severity; or in the case of trials in MCI where patients
with isolated memory impairment have a relatively high risk of converting to AD, (Gauthier
et al., 2006) incorporating only those patients with additional genetic risk factors (i.e.
possession of ApoE4 genotype). This approach however potentially limits the wider
applicability of any subsequent findings, and the pool of eligible patients. Another possible
approach is to adjust for such variables in the statistical analysis of atrophy measures. This has
the potential advantage of allowing a wider range of patients to enter a study, while limiting
sample size requirement by controlling for between-subject variability.

In this study, we used the publicly available Alzheimer's disease neuroimaging initiative
(ADNI) dataset to establish: (1) the potential reduction in sample size that can be gained in
treatment trials of AD, and MCI using measures of brain volume reduction; ventricular
expansion; and an automated measure of hippocampal atrophy by adjusting for predefined
baseline characteristics; (2) confidence intervals for these sample sizes; and (3) the numbers
needed to power such studies with and without accounting for normal aging.

1. Methods
1.1. Subjects

All subjects were drawn from ADNI, which was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceutical companies, and nonprofit
organizations, as a 5-year public-private partnership. The aims of ADNI included assessing
the ability of imaging and other biomarkers to measure the progression of MCI and early AD.

The Principal Investigator of this initiative is Michael W. Weiner MD, VA Medical Center and
University of California, San Francisco. ADNI is the result of efforts of many coinvestigators
from a broad range of academic institutions and private corporations, and subjects have been
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recruited from over 50 sites across the USA and Canada. The initial goal of ADNI was to recruit
800 adults, ages 55 to 90, to participate in the research—approximately 200 cognitively normal
older individuals, 400 people with MCI, and 200 people with early AD. For up-to-date
information see www.adni-info.org. Written informed consent was obtained for participation
in these studies, as approved by the Institutional Review Board at each of the participating
centers. We downloaded data from LONI (www.loni.ucla.edu/ADNI/) on 29 September, 2009,
and included all subjects (controls, MCI or AD) at baseline that had usable 1.5 T MRI imaging
at baseline and 1 year; scans were only rejected if nondisease related pathology potentially
affecting measurement was seen. All subjects had a standardized cognitive assessment at
baseline, which included: MMSE, CDR-SB, ADAS-Cog (13 point scale); and blood was drawn
for ApoE4 genotyping. Approximately 60% of the ADNI cohort had a CSF examination at
baseline, and measurement of CSF tau, p-tau, and Aβ1-42 was performed centrally, as
previously described (Shaw et al., 2009).

1.2. MR imaging
MR Imaging was performed using a standardized protocol on 1.5-T MRI units from Siemens
Medical Solutions, Phillips, and General Electric Healthcare. MR protocols included the
acquisition of sagittal high-resolution volumetric T1-weighted, inversion recovery prepared,
structural images (www.adni-info.org/images/stories//mritrainingmanualv1.pdf for more
details). Before the MR images were uploaded to the central image repository, images
underwent several preprocessing steps, as previously described (Evans et al., 2009). These
included corrections for distortion due to gradient nonlinearity; for image intensity
nonuniformity using N3; for B1 nonuniformity where required; and scalings based on phantom
measures. Local image analysis was performed using the MIDAS software package
(Freeborough et al., 1997).

1.3. Image postprocessing
Whole brain segmentation was performed using a semiautomated technique with manual
editing as required. Baseline brain regions were propagated onto the follow-up MR datasets
using affine and free-form deformation-based (FFD) nonrigid registration, as described by
Evans (Evans et al., 2009). The ventricular system was outlined on baseline and follow-up
scans registered to standard space, using a previously described semiautomated protocol with
manual editing as required (Evans et al., 2009). Change (mL) in whole brain volume and
ventricular size were obtained using the boundary shift integral (BSI) following a 9 degrees-
of-freedom registration and differential bias correction of the follow-up to baseline scans. For
whole brain changes, a recently validated enhancement to the BSI protocol which involves
improved intensity normalization (KN–BSI) was used (Leung et al., 2009).

Hippocampal volume change was calculated using the automated hippocampal outlining
measure hMAPS (hippocampal Multi-Atlas Propagation and Segmentation), which has
previously been extensively validated using the ADNI dataset (Leung et al., 2010). In brief,
baseline hippocampal regions were generated by registration of the eight best-matched
hippocampi from a template library (Barnes et al., 2008) using FFD registration together with
image intensity thresholding. These eight hippocampal regions were combined using STAPLE
together with a Markov random field filter with a weighting of 0.2 (Warfield et al., 2004).
Hippocampal volume change between the two time-points was given by calculating boundary
shift integral (HBSI) using the baseline hippocampal regions.

1.4. Statistical analysis
1.4.1. Sample sizes without covariate adjustment—Separately for AD and MCI
subjects, we estimated the number of patients needed for a randomized controlled trial, using
either annualized whole brain atrophy (KN–BSI absolute loss), annualized ventricular
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enlargement (vBSI absolute enlargement), or annualized hippocampal atrophy (hMAPS HBSI
absolute loss) as outcome. We estimated the sample sizes required per arm, for 80% power
and a 5% Type 1 error rate using the standard formula:

(1)

where σ2 denotes the variance in outcome, estimated either in AD or MCI subjects. We
calculated sample size estimates to detect a reduction in absolute rate equal to 25% of the rate
in AD/MCI subjects, by setting Δ equal to 0.25 times the estimated mean AD/MCI rate. We
also report estimated sample sizes which assume the maximal possible reduction in rate of
atrophy/enlargement would be to reduce the AD/MCI rates to that seen in control subjects; this
is equivalent to setting Δ equal to 0.25 times the estimated difference in means between AD/
MCI subjects and controls.

1.4.2. Reduction in sample size through covariate adjustment—For each measure
of atrophy and separately in each group (ADs and MCIs), we assessed the percentage reduction
in sample size obtained by adjusting for each of 11 a priori selected baseline measures: age,
baseline brain volume, baseline ventricle volume, baseline hippocampal volume, MMSE,
CDR-Sum of boxes, ADAS-Cog, CSF tau, CSF Aβ1-42, CSF p-tau, or ApoE4 dose (0, 1 or
2) (see www.adni-info.org for details). Because the CSF variables were positively skewed, we
used the logarithm of their values in our analyses. We also estimated the reduction in sample
size which would be achieved if all of these variables were included as covariates.

The proportionate reduction in variance (and hence required sample sizes) accorded through
adjustment for a single covariate is equal to the square of the population correlation coefficient,
ρ2 (Borm et al., 2007). It is well-known that the sample estimator R2 is biased, and that the bias
can be substantial when the number of covariates is large relative to the number of subjects
used to fit the regression model (Lucke et al., 1984). Alf and Graf proposed a parametric
marginal maximum likelihood estimator for ρ,2 and showed that it has lower mean squared
error compared with the sample R2 estimator (Alf and Graf, 2002). Following this proposal,
but without making parametric assumptions, we estimated ρ2 by its empirical maximum
likelihood estimate. We estimated the empirical likelihood function using the bootstrapping
technique, as proposed by Pawitan (Pawitan, 2000), using 1 million bootstrap samples. This
procedure also provides 95% bias-corrected and accelerated bootstrap confidence intervals for
ρ2. When adjusting for multiple covariates, sample sizes are reduced by the squared multiple
correlation coefficient (Borm et al., 2007), which we again estimated using the above empirical
likelihood procedure. Our calculations ignore the cost of estimating the covariate effects, which
for a fixed number of covariates, tends to zero in randomized trials as sample sizes increase.

By design, not all participants in the ADNI study had CSF collected, leading to missing data
for CSF tau, CSF Aβ1-42 and CSF p-tau. Complete-case analysis, i.e. using only those subjects
who had CSF, is inefficient because it discards the observed information from those subjects
who did not have CSF. Furthermore, such estimates may be biased if the decision as to whether
a subject had CSF was not completely at random. For the estimates of sample size reduction
using the CSF variables, and “all covariates”, we therefore based estimation on the observed
data likelihood function, assuming multivariate normality of the (logged) CSF variables,
conditional on all others (other baseline variables and the three outcome variables), with an
unstructured variance–covariance matrix (Little and Rubin, 2002). For those without CSF, this
approach uses information on the fully observed baseline variables and atrophy measures to
predict the missing CSF values, based on the relationship in those with CSF. Like the method
of multiple imputation, it provides consistent estimates provided the decision to have CSF did
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not depend on the unobserved CSF values, conditional on the other variables (the so-called
“missing at random” assumption), and that the conditional normality assumption is valid.

To investigate whether those subjects with CSF differed systematically from those without
CSF, we compared the distributions of baseline characteristics between these two groups using
two-sample t-tests with allowance for unequal variances and chi-squared tests. We also present
estimates of sample size reductions found using data only from the subsets of the AD and MCI
subjects who had CSF, for comparison with results based on using the available data from all
subjects.

Analyses were performed in Stata 10 and R 2.10.1.

2. Results
Baseline characteristics are shown in Table 1. Controls, MCI subjects, and AD patients were
well matched for age. MMSE was highest in controls; intermediate in MCI, and lowest in AD;
ADAS-Cog was highest in AD; intermediate in MCI, and lowest in controls. Hippocampal and
brain volumes were highest in controls, intermediate in MCI, and lowest in AD; and ventricular
volumes were largest in AD, intermediate in MCI, and smallest in controls. CSF measures
were available in 53.3% of controls; 51.8% of the MCI subjects; and 56.9% of the AD patients.
Tau and P-tau levels were highest in AD, intermediate in MCI, and smallest in controls; and
conversely Aβ1-42 levels were lowest in controls, intermediate in MCI, and highest in AD.
28.6% of the controls, 53.3% of the MCI subjects, and 66.6% of the AD patients had one or
more ApoE4 alleles.

Rates of atrophy (mL/yr) are shown in Table 2. Mean whole brain and hippocampal volume
loss, and ventricular expansion were highest in AD, intermediate in MCI, and smallest in
controls, with statistically significant differences (p > 0.05) between the groups.

For each group, sample sizes were estimated to detect a 25% absolute reduction in rate of whole
brain or hippocampal atrophy, or ventricular expansion. However, as the maximal reduction
in rate of atrophy that can reasonably be expected is down to that seen in controls, we calculated
the effective percentage reduction in these measures assuming a maximally efficacious
treatment would reduce atrophy to the mean level in controls (Table 3). Using any of the three
measures, in patients with established AD, a 25% absolute decline in rate of change is
equivalent to a 36–43% reduction account for aging; and in MCI, this represents a 45–56%
reduction.

Sample size estimates for a 25% mean reduction of the outcome (without allowing for normal
aging), or 25% of the AD/MCI vs. control difference, are shown in Table 4 (AD) and 5 (MCI).
All calculations were performed to provide 80% power with a 5% Type I error rate. The
numbers required to power a trial to detect 25% mean reduction were ~ 3-fold higher in AD
and ~ 5-fold higher in MCI when normal aging was accounted for.

The estimated reductions in sample size achieved by adjusting whole brain atrophy for baseline
brain volume; or hippocampal atrophy for baseline hippocampal volume, were small (~ 1%).
Larger (10% in AD, 16% in MCI) reductions were however achievable by adjusting ventricular
enlargement for baseline ventricular volume. Adjusting for disease severity as measured by
ADAS-Cog reduced estimated sample sizes by ~ 5% for AD; and ~ 8% in MCI. In AD subjects,
accounting for CSF Aβ1-42 reduced sample sizes by 7–11%; and for MCI by 4–8%.
Adjustment for all 11 covariates was estimated to reduce required sample sizes in AD using
whole brain atrophy by ~ 16%; for ventricular enlargement by ~ 29%; and hippocampal atrophy
by ~ 16% (see Table 4). In MCI, adjusting for all 11 covariates, sample sizes could be reduced
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by ~ 18% using whole brain atrophy; by ~ 28% using ventricular enlargement; and by ~ 12%
using hippocampal atrophy rates (Table 5).

There was no suggestion that subjects who had CSF differed compared with those who did not
with respect to any of the baseline characteristics, in either the MCI group or AD group (see
Supplementary Table 1a). Supplementary Tables 2a and 3 a show estimates of percentage
reduction in sample sizes based on the subset of subjects for whom CSF data were available,
which were similar to those found using data from all subjects (see Discussion).

3. Discussion
Rate of cerebral atrophy calculated from serially acquired MRI is increasingly used as an
outcome measure for clinical trials in AD (Fox et al., 2005; Jack et al., 2003) and MCI (Jack
et al., 2008). Attenuation of atrophy may provide a signal of a disease-modifying effect and
sample size requirements may be much lower than those using traditional clinical outcome
scores (Jack et al., 2003). Sample size calculations are proportional to the variance of the
measure used, and such variability is a combination of within- and between-subject variability.
Within-subject variability may arise because of measurement error and physiological
variability over time, and numerous approaches to reducing these sources of error have been
employed, including improving the stability of scan acquisition; employing multiple scanning
time-points; (Schott et al., 2006) and developing novel and more accurate image analysis
techniques, such as tensor-based morphometry (Hua et al., 2009).

Variation between individuals is likely to reflect several factors, including age, disease stage,
differences in underlying pathological substrate (e.g. contribution from vascular disease and
TDP-43 pathology (Josephs et al., 2008)), and other as yet unidentified epidemiological or
genetic factors. Driving down these sources of variance, which have previously been estimated
to contribute to over 50% of the variance in whole brain atrophy rate over 1 year in patients
with established AD, (Schott et al., 2006) and are higher in MCI, is an alternative way to reduce
sample sizes.

One method is to “enrich” trials by preselection of patients in an attempt to produce a more
homogeneous group. This approach however potentially limits the wider applicability of the
trial findings. An alternative approach is to include a broader range of individuals, but to
predefine baseline characteristics that might be expected to explain inter-individual variation,
and incorporate these into the analysis. Using this methodology, and incorporating baseline
information routinely collected during the course of a clinical study, we have demonstrated
that reduction of sample sizes of up to 15–30% in established AD and 10–30% in MCI may
be achieved.

The raw sample size estimates we have produced to provide 80% power to show a 25%
reduction in rate of change for a 1 year study of AD (i.e. ~ 80 per arm using the KN–BSI; ~
120 per arm using the VBSI; and ~ 90 per arm using semiautomated hippocampal measures)
are in line with those suggested by previous work (Barnes et al., 2008; Leung et al., 2009;
Schott et al., 2005). In the context of patient recruitment, retention and cost, the 10–30%
reduction in sample size potentially achievable by adjusting for baseline covariates, all of which
are commonly measured, is not insignificant. The raw sample sizes required for an MCI trial
are much larger (i.e. ~ 150 per arm using the KN–BSI; ~ 230 per arm using the VBSI; and ~
200 per arm using hippocampal measures), but the percentage gains to be made by adjustment
are similar, leading to sample sizes that are within the scope of Phase II studies. Few studies
have reported confidence intervals on the “raw” sample sizes as we have done (Holland et al.,
2009; Schott et al., 2006). Reporting such intervals for sample size estimates is essential, to
indicate the precision with which they have been estimated.
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In this study, we have analyzed volume loss (or ventricular enlargement) in mLs/yr, rather than
as a percentage change. The approximate percentage changes we found are in keeping with
prior studies (e.g. in AD ~ 1.5% whole brain atrophy/yr; ~ 5% hippocampal atrophy/yr). The
whole brain atrophy rates were slightly smaller than in some previous studies (Fox et al.,
2005; Schott et al., 2006), possibly reflecting either that the ADNI cohort were slightly older
or had slightly milder disease than these other studies.

We found that while adjusting for baseline ventricular volume significantly reduced variability
of VBSI, there was relatively little effect of adjusting KN–BSI or HMAPSHBSI for baseline
brain or hippocampal volumes respectively. Thus while those with greater baseline ventricular
volume tended to have greater subsequent ventricular enlargement, there was no evidence that
baseline whole brain or hippocampal volumes were associated with subsequent atrophy in the
same region.

Our results suggest that certain core features that contribute to the observed variance in atrophy
rates; and when adjusted for, can significantly reduce the required sample sizes. Thus across
all measures and in both AD and MCI, disease severity as measured using the ADAS-Cog is
consistent in explaining some between-subject variance. Our results suggest that, for all three
measures in AD and MCI subjects, CSF Aβ1–42 explains a moderate amount of variability in
outcomes, with lower Aβ1–42 being associated with increased rates of atrophy; by contrast
differences in baseline phosphorylated or total tau explained little variability. These results,
seen in both the MCI and AD groups are perhaps surprising, as reduction of CSF Aβ1–42
reflecting deposition of fibrillar amyloid deposition within plaques is an early feature of AD
and one that may begin to plateau in established disease (Jack et al., 2010). By contrast,
elevation of CSF tau is thought to reflect ongoing neuronal degeneration, and thus might be
expected to be a more sensitive measure of change throughout the course of the disease.
Previous studies assessing the influence of CSF biomarkers on measures of atrophy have shown
conflicting results. De Leon et al. (2006) and Schuff et al., (2009) (the latter analyzing the
ADNI dataset) reported higher rates of hippocampal loss in MCI to be associated with lower
levels of Aβ1–42. Several studies found increased hippocampal rates to be associated with
higher levels of p-tau in MCI (de Leon et al., 2006; Hampel et al., 2005; Henneman et al.,
2009), while in established AD, a weak association between baseline p-tau and whole brain
atrophy has been reported (Sluimer et al., 2008). In interpreting the results for individual
covariates in explaining atrophy rates, it is important to note that the confidence intervals for
the estimated reductions in sample sizes are wide. Furthermore, we did not attempt to find the
“optimal” subset of covariates to adjust, for two reasons. First, the optimal subset is likely to
vary depending on the particular population studied. Second, defining the meaning of such an
optimal subset, and finding it, is highly challenging from both a statistical and substantive
perspective, given that all covariates provide some predictive value and that the “cost” of
obtaining them often differs between variables (e.g. age v. CSF). Thus while our results suggest
that disease severity and CSF Aβ1–42 may explain a relatively large proportion of between-
subject differences in rate of atrophy, a degree of caution must be used when attempting to
estimate the extent of influence of any one measure. The covariates found to be most predictive
in these data-set, while biologically plausible, should not automatically be assumed to exert
the same effect in all other AD/MCI studies.

Adjustment for baseline covariates can be performed by fitting a regression model for the
outcome, with treatment group and the baseline covariates as “independent variables”. If an
adjusted analysis is to be used as the primary analysis of a trial, it is generally deemed as
essential to prespecify in the trial's protocol the regression model which is to be used and which
covariates will be adjusted for, although recently methods have been proposed which allow
covariates to be selected using the trial data itself in such a way which does not lead to
overestimated treatment effects (Tsiatis et al., 2008).
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For continuous outcomes analyzed by linear regression models, the increase in statistical
efficiency afforded through covariate adjustment depends on the strength of the associations
between the covariates and outcome, and the size of the study (Cox and McCullagh, 1982). In
large randomized studies, adjustment for a small number of baseline covariates incurs a
negligible cost in degrees of freedom, because treatment group is independent of baseline
covariates (a consequence of randomization). In smaller trials, where this cost is nonnegligible,
the benefit of covariate adjustment in efficiency will be less, and may even be detrimental. The
decision as to how many covariates are adjusted for should therefore been made in light of the
size of the trial and the presumed strength of the associations between covariates and the
outcome. In moderate to large trials, covariate adjustment is expected (approximately) to
increase efficiency if the number of covariates is no more than ρ2 (the population squared
multiple correlation coefficient) times the number of subjects (Cox and McCullagh, 1982).

It is likely that maximum gain from neuroprotective agents will be achieved if these are given
as early as possible in the disease process, and ideally at an asymptomatic stage even before
fulfilment of criteria for MCI (Petersen, 2009). However if clinical trials are to be powered
appropriately, it is critically important that the effect of normal aging is not ignored. It is
unlikely that any neuroprotective agent will slow the rate of atrophy to below that seen in
normal aging, and as rates of atrophy in MCI are smaller than in AD and consequently closer
to normal aging, studies of MCI that do not acknowledge normal aging as a floor effect are in
danger of being underpowered. This is demonstrated in this study, where an absolute 25%
reduction in atrophy rate equates to a relative reduction accounting for the effects of normal
aging of ~ 35% in AD; but as much as 50% in MCI, with consequent large increases in required
sample sizes when normal aging is taken into account. Simply comparing sample sizes which
do not take into account normal aging disadvantages outcomes that have little aging effects
(e.g. some cognitive measures), and flatters those with relatively large changes in normal aging
(e.g. atrophy).

This study suggests that simply in terms of study power, using standard placebo/control
designs, preliminary studies of disease modifying drugs are more likely to show an effect when
tested in patients with established AD. This conclusion however does not acknowledge that
different disease processes may peak at different stages of the disease; that it may be more
difficult to halt a wide-spread and advanced pathological process; and that there is more brain
and cognition to be saved in early disease. Advances in accurate, early diagnosis of AD, and
novel trial designs, incorporating multiple scanning time-points, run-in periods (Frost et al.,
2008) or cross-over designs (Cummings, 2009), may however be able to reduce within-subject
variability still further and make early treatment studies more viable.

The strengths of this study include the use of a large, well validated, publicly available dataset,
consisting of representative patients acquired from multiple sites and different scanners
(Petersen et al., 2010); robust statistical methodology; and a critical analysis of a range of
different potential covariates in patients with MCI, AD and normal controls, using three
different measures of structural change. We did not include PIB-PET measures (Jack et al.,
2009) or other genetic haplotype data (Potkin et al., 2009) which might have been able to
explain some of the large unexplained between-subject variability. Only ~ 55% of subjects had
CSF results, potentially limiting the validity of our estimates for the benefit of adjusting for
the CSF variables, as well as using all the covariates. To deal with the missing CSF values, we
used a principled statistical technique for dealing with missing data. This approach uses the
relationship between CSF variables and the other variables, estimated in those who had CSF,
to (implicitly) predict the missing CSF variables in those who did not have lumbar puncture.
The resulting estimates are consistent provided the decision to have CSF did not depend on
the unobserved CSF values (conditional on observed variables), which seems reasonable, and
provided the underlying statistical model is correctly specified. A comparison of the
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distribution of fully observed baseline characteristics between those who had CSF and those
who did not revealed no statistically significant differences. Furthermore, the estimates of
percentage sample size reduction found using the subset of AD/MCI subjects for whom CSF
was available were similar to those found using the available data from all subjects. Differences
between the estimates may be due to several reasons (Sterne et al., 2009). First, estimates based
on data from all subjects are, providing the modeling assumptions are valid, more precise than
those based on the subset (~ 55% of each group) for whom CSF was available. Second, results
may differ if the CSF data are not missing completely at random, although as noted there was
little evidence against this assumption. We also note that in trials some outcome data are
typically missing for some subjects, for a variety of potential reasons. Allowing for such
missing values at both the design and analysis stage (e.g. through the use of linear mixed models
or imputation methods) is essential.

The linear regression model used is based on a number of assumptions, including linearity of
effects, no interactions, constant variance and normality of residuals. However, it has been
shown that the covariate adjusted treatment effect estimates are (in large samples) unbiased
without requiring these assumptions (Tsiatis et al., 2008). Using the standard sample size
formula, we have assumed that in a future trial the variance of the atrophy/ventricular
enlargement outcome would be the same in the two treatment arms, equal to that estimated
using the ADNI data. Our estimates of sample sizes with covariate adjustment are valid with
the additional assumption that the covariances of the covariates with the atrophy/ventricular
enlargement outcomes would be the same in the two treatment arms. The extent to which
covariates can explain variability in the outcome, and hence reduce sample sizes, depends
critically on the variability of the covariate in the sample. Strictly speaking therefore, our
estimates are applicable for future studies in which AD/MCI patients are recruited using the
same criteria as that in the ADNI study. In particular, the covariates may explain a larger
proportion of variability between patients in the wider AD/MCI populations, since the
covariates are likely to have greater variability than in the ADNI study. However, the ADNI
dataset has been shown to be representative of patients who might be recruited for therapeutic
studies (Petersen et al., 2010).

In summary, we have shown that useful reductions in sample sizes may be achieved in AD and
MCI trials using measures of cerebral volume change as an outcome measure if baseline
characteristics are used as covariates. Required sample sizes are substantially higher in MCI
trials than those carried out in patients with established AD, and the effect of accounting for
normal aging as a floor threshold below which excess atrophy cannot fall implies significantly
higher patient numbers will be needed for a given drug effect, particularly in MCI. It is critical
that future trials of potentially disease-modifying therapies are appropriately powered so as
not to miss a potential effect, and these data may help to inform such trial designs.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1

Baseline characteristics of subject groups. Values shown are mean (SD) unless stated otherwise.

Baseline variable Control (n = 199) MCI (n = 334) AD (n = 144)

Brain volume (mL) 1058.7 (102.6) 1050.2 (115.7) 1007.0 (113.6)

Vent, volume (mL) 38.2 (20.7) 47.4 (24.7) 54.1 (28.1)

hMAPS hippocampal volume (mL) 5.16 (0.73) 4.45 (0.87) 3.93 (0.91)

Male (n,%) 106 (53.3) 212 (63.5) 75 (52.1)

Age (yrs) 76.0 (5.1) 74.9 (7.2) 75.2 (7.3)

MMSE (/30) 29.1 (1.0) 27.0 (1.8) 23.5 (1.9)

CDR-sum 0.03 (0.11) 1.58 (0.89) 4.19 (1.55)

ADAS-cog 9.3 (4.1) 18.5 (6.6) 28.2 (8.3)

Tau (pg/mL) 68.8 (28.2)a 100.4 (52.9)c 122.6 (56.7)b

Aβ 1–42 (pg/mL) 205.3 (54.0)a 163.0 (54.2)c 141.0 (40.5)b

P-tau (pg/mL) 24.8 (13.8)a 35.0 (16.7)c 41.6 (19.4)b

ApoE4 dose (n,%)

 0 142 (71.4) 156 (46.7) 48 (33.3)

 1 52 (26.1) 138 (41.3) 67 (46.5)

 2 5 (2.5) 40 (12.0) 29 (20.1)

a
n = 106

b
n = 82

c
n = 173
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Table 2

Rates of change over 1 year by subject group. Values shown are mean (SD) [95% CI for mean].

Atrophy rate (mL/yr) Control (n = 199) MCI (n = 334) AD (n = 144)

Whole Brain (KN-BSI) 6.27 (6.15) [5.41, 7.13] 11.39 (8.78) [10.45, 12.34] 15.19 (8.64) [13.77, 16.62]

Ventricular expansion (VBSI) 1.43 (1.63) [1.21, 1.66] 2.85 (2.75) [2.56, 3.15] 4.52 (3.10) [4.00, 5.03]

Hippocampi (hMAPS-HBSI) 0.052 (0.089) [0.040, 0.065] 0.117 (0.105) [0.106, 0.129] 0.175 (0.104) [0.158, 0.192]
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Table 3

Effective percentage reduction in atrophy rates accounting for normal aging, based on absolute percentage
reduction (not accounting for aging) = 25%

MCI AD

Whole Brain (KN-BSI) 55.6% 42.6%

Ventricular expansion (VBSI) 50.2% 36.6%

Hippocampi (hMAPS-HBSI) 45.0% 35.6%
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